A Novel Scheme of Strain-constructed Point Interpolation Method for Static and Dynamic Mechanics Problems
نویسندگان
چکیده
This paper presents a new scheme of strain-constructed point interpolation method (SC-PIM) for static, free and forced vibration analysis of solids and structures using triangular cells. In the present scheme, displacement fields are assumed using shape functions created via the point interpolation method (PIM), which possess the Kronecker delta property facilitating the straightforward enforcement of displacement boundary conditions. Using the generalized gradient smoothing technique, the “smoothed” strains at the middle points of the cells edges are first obtained using the corresponding edge-based smoothing domains and the assumed displacement field. In each triangular background cell, the strains at the vertices are assigned using these smoothed strains in a proper manner, and then piecewisely linear strain fields are constructed by the linear interpolation for each sub-triangular cell using the edge-based “smoothed” strains. With the assumed displacements and constructed linear strain fields, the discretized system equations are created using the Strain Constructed Galerkin (SC-Galerkin) weak form. A number of benchmark numerical examples, including the standard patch test, static, free and forced vibration problems, have been studied and intensive numerical results have demonstrated that the present method possesses the following properties: (1) it works well with the simplest triangular mesh, no additional degrees of freedom and parameters are introduced and very easy to implement; (2) it is at least linearly conforming; (3) it possesses a close-to-exact stiffness: it is much stiffer than the “overly-soft” node-based smoothed point interpolation method (NS-PIM) and much softer than the “overly-stiff” FEM model; (4) the results of the present method are of superconvergence and ultraaccuracy: about one order of magnitude more accurate than those of the linear FEM; (5) there are no spurious non-zeros energy modes found and it is also temporally stable, hence the present method works well for dynamic problems.
منابع مشابه
A local point interpolation method (LPIM) for static and dynamic analysis of thin beams
The Local Point Interpolation Method (LPIM) is a newly developed truly meshless method, based on the idea of Meshless Local Petrov-Galerkin (MLPG) approach. In this paper, a new LPIM formulation is proposed to deal with 4th order boundary-value and initial-value problems for static and dynamic analysis (stability, free vibration and forced vibration) of beams. Local weak forms are developed usi...
متن کاملMechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams
Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...
متن کاملA novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کاملA Normed G Space and Weakened Weak (w) Formulation of a Cell-based Smoothed Point Interpolation Method
This paper presents a normed G1 space and a weakened weak (W2) formulation of a cellbased smoothed point interpolation method (CS-PIM) for 2D solid mechanics problems using three-node triangular cells. Displacement fields in the CS-PIM are constructed using the point interpolation method (polynomial PIM or radial PIM) and hence the shape functions possess the Kronecker delta property facilitati...
متن کاملThree dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009